A Terahertz Identification Method for Internal Interface Structures of Polymers Based on the Long Short-Term Memory Classification Network

Author:

Wang Shushan,Mei HongweiORCID,Liu Jianjun,Chen Dabing,Wang LimingORCID

Abstract

Polymers are used widely in the power system as insulating materials and are essential to the power grid’s security and stability. However, various insulation defects may occur in the polymer., which can lead to severe insulation accidents. Terahertz (THz) detection is a novel non-destructive testing (NDT) method that is able to detect the interface structures inside polymers. The large quantity of information in the THz waveform has potential for the identification of interface types, and the long short-term memory (LSTM) network is one of the most popular artificial intelligence methods for time series data like THz waveform. In this paper, the LSTM classification network was used to identify the internal interfaces of the polymer with the reflected THz pulses of the internal interfaces. The experiment verified that it is feasible to identify and image the void interfaces and impurity interfaces in the polymer using the proposed method.

Funder

State Grid Corporation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference35 articles.

1. External Insulation of Insulators and Transmission and Transformation Equipment;Guan,2006

2. Influence of environmental humidity on infrared measurement temperature of composite insulators;Wang;High Voltage Eng.,2019

3. Research on the Influence of Extremely Cold Environment on the Performance of Silicone Rubber and Fluorinated Silicone Rubber

4. Acceleration and localization of subcritical crack growth in a natural composite material

5. Statistical Analysis of String Fracture and Core Breakdown of Composite Insulators in Zhejiang Province;Zhou;Proceedings of the IEEE Sustainable Power and Energy Conference (iSPEC),2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terahertz 2-D Imaging Framework for Detection Based on Dual Clustering Methods;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3