Abstract
Bi-material composite structures with continuous fibers embedded on polymer substrates exhibit self-morphing under thermal stimulus induced by the different coefficients of thermal expansion (CTE) between the two constituent materials. In this study, a series of such structures are investigated in terms of fiber patterns and materials to achieve programmable and reversible transformations that can be exploited for thermal management applications. Stemming from this investigation’s results, an axial cooling fan prototype is designed and fabricated with composite blades that passively alter their shape, specifically their curvature and twist angle, under different operating temperatures. A series of computational fluid dynamics (CFD) simulations are performed, subjecting the fan’s geometry to different flow temperatures to measure differences in airflow deriving from the induced shape transformations. Corresponding experimental trials are additionally performed, aiming to validate the simulation results. The results indicate the potential of utilizing bilayer self-morphing configurations for the fabrication of smart components for cooling purposes.
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献