Abstract
Deterioration of asphalt pavements due to massive load of vehicles and climatic variation has demanded the use of pavements construction material with an excellent resilience characteristic, resistance to permanent deformation, and most importantly, a much longer service lifespan. The main structural distresses in pavement construction are permanent deformation at high temperatures and fatigue cracking under repetitive traffic loadings. To comprehensively investigate the performance of bitumen penetration grade (PG) 70 against rutting, fatigue, and high temperature cracking in hot mix asphalt (HMA) pavements, polycarbonate (PC) and polytetrafluoroethylene (PTFE) were used. The investigation of the internal structure, rheological, and physical properties of base and modified bitumen (MB) mixes with different percentages of modifiers (0%, 2.5%, and 5%) by weight were performed via scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) analysis, X-ray diffraction (XRD) pattern analysis, rolling thin-film oven test (RTFOT), pressurized aging vessel (PAV), dynamic shear rheometer (DSR), rotational viscosity (RV), and bending beam rheometer (BBR). The results of the RV test indicate that modification of neat bitumen with polycarbonate and polytetrafluoroethylene increased the viscosity for polycarbonate-modified bitumen (PCMB), polytetrafluoroethylene-modified bitumen (PTFEMB), and for a blend of PCMB-PTFEMB by 44%, 50%, and 55.75% at 135 °C and 111.10%, 127.80%, and 138.88% at 165 °C, accordingly. BBR test results revealed that modifiers increased the rigidity of neat bitumen by 74.8%, 75.8%, and 74.5% at −16 °C, −22 °C, and −28 °C, respectively.
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献