Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites

Author:

Alshammari Basheer A.ORCID,Alenad Asma M.ORCID,Al-Mubaddel Fahad S.ORCID,Alharbi Abdullah G.,Al-shehri Abdulaziz Salem,Albalwi Hanan A.,Alsuabie Fehaid M.,Fouad Hassan,Mourad Abdel-Hamid I.ORCID

Abstract

The main objective of this work is to develop a variety of hybrid high-density polyethylene (HDPE) micro- and nanocomposites and to investigate their thermal, mechanical, and morphological characteristics as a function of number of fillers and their contents percentage. In this study, 21 formulations of the composites were prepared using fillers with different sizes including micro fillers such as talc, calcium carbonate (CaCO3), as well as nano-filler (fumed silica (FS)) though the melt blending technique. The morphological, mechanical, and thermal properties of the composite samples were evaluated. The morphological study revealed negligible filler agglomerates, good matrix–filler interfacial bonding in case of combined both CaCO3 and FS into the composites. Sequentially, improvements in tensile, flexural and Izod impact strengths as a function of fillers loading in the HDPE matrix have been reported. The maximum enhancement (%) of tensile, flexural and impact strengths were 127%, 86% and 16.6%, respectively, for composites containing 25% CaCO3 and 1% FS without any inclusion of talc filler; this indicates that the types/nature, size, quantity and dispersion status of fillers are playing a major role in the mechanical properties of the prepared composites more than the number of the used fillers.

Funder

Al Jouf University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3