Evaluation of the Antibacterial Activity of Eco-Friendly Hybrid Composites on the Base of Oyster Shell Powder Modified by Metal Ions and LLDPE

Author:

Widakdo JanuarORCID,Chen Tsan-Ming,Lin Meng-Chieh,Wu Jia-Hao,Lin Tse-Ling,Yu Pin-Ju,Hung Wei-Song,Lee Kueir-Rarn

Abstract

Transforming biological waste into high-value-added materials is currently attracting extensive research interest in the medical and industrial treatment fields. The design and use of new antibacterial systems are urgently needed. In this study, we used discarded oyster shell powder (OSP) to prepare calcium oxide (CaO). CaO was mixed with silver (Ag), zinc (Zn), and copper (Cu) ions as a controlled release and antibacterial system to test the antibacterial activity. The inhibition zones of various modified metals were between 22 and 29 mm for Escherichia coli (E. coli) and between 21 and 24 mm for Staphylococcus aureus (S. aureus). In addition, linear low-density polyethylene (LLDPE) combined with CaO and metal ion forms can be an excellent alternative to a hybrid composite. The strength modulus at 1% LLDPE to LLDPE/CaO Ag increased from 297 to 320 MPa. In addition, the antimicrobial activity of LLDPE/CaO/metal ions against E. coli had an antibacterial effect of about 99.9%. Therefore, this hybrid composite material has good potential as an antibacterial therapy and biomaterial suitable for many applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3