Effects of Titanium–Silica Oxide on Degradation Behavior and Antimicrobial Activity of Poly (Lactic Acid) Composites

Author:

Teamsinsungvon ArpapornORCID,Ruksakulpiwat Chaiwat,Ruksakulpiwat YupapornORCID

Abstract

A mixed oxide of titania–silica oxides (TixSiy oxides) was successfully prepared via the sol–gel technique from our previous work. The use of TixSiy oxides to improve the mechanical properties, photocatalytic efficiency, antibacterial property, permeability tests, and biodegradability of polylactic acid (PLA) was demonstrated in this study. The influence of different types and contents of TixSiy oxides on crystallization behavior, mechanical properties, thermal properties, and morphological properties was presented. In addition, the effect of using TixSiy oxides as a filler in PLA composites on these properties was compared with the use of titanium dioxide (TiO2), silicon dioxide (SiO2), and TiO2SiO2. Among the prepared biocomposite films, the PLA/TixSiy films showed an improvement in the tensile strength and Young’s modulus (up to 5% and 31%, respectively) in comparison to neat PLA films. Photocatalytic efficiency to degrade methylene blue (MB), hydrolytic degradation, and in vitro degradation of PLA are significantly improved with the addition of TixSiy oxides. Furthermore, PLA with the addition of TixSiy oxides exhibited an excellent antibacterial effect on Gram-negative bacteria (Escherichia coli or E. coli) and Gram-positive bacteria (Staphylococcus aureus or S. aureus), indicating the improved antimicrobial effectiveness of PLA composites. Importantly, up to 5% TixSiy loading could promote more PLA degradation via the water absorption ability of mixed oxides. According to the research results, the PLA composite films produced with TixSiy oxide were transparent, capable of screening UV radiation, and exhibited superior antibacterial efficacy, making them an excellent food packaging material.

Funder

Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3