Evolution Behaviors and Reduction Mechanism of Curing Residual Stresses in GLARE Laminates under a Hot-Pressing Condition

Author:

Li Huaguan,Wang Hao,Xiang Junxian,Li Zhaoxuan,Chen Xi,Tao Jie

Abstract

Nowadays, variable preparation, forming and processing methods of fiber metal laminates are constantly developing to meet the requirements of different application fields, hence the characteristics and evolution of residual stresses under different manufacturing conditions deserve more attention. In this work, the evolution behaviors of curing residual stresses in GLARE under a hot-pressing condition were studied, and the residual stress reduction mechanism was also explained. Results suggested the FE prediction models of the entire cure process, verified by the fiber Bragg grating (FBG) sensors, were more precise than the traditional elastic model. Moreover, the stress evolution during the cure process mainly occurred in the cooling stage, in which the different coefficient of thermal expansion (CTE) of aluminum and GFRP played a major role. Meanwhile, curing shrinkage stress in the GFRP layer during the holding stage at curing temperature obviously influenced the final stress level. The residual stresses in GFRP layers differed by 9.6 MPa under a hot-pressing and autoclave condition, in which the convection heat transfer condition played a major role as it caused lower thermal stress in the holding stage and a smaller temperature gradient in the cooling stage. Considering this, a lower cooling rate could be a feasible way to obtain GLARE with lower residual stress under a hot-pressing condition.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3