Design of a Smart Conducting Nanocomposite with an Extended Strain Sensing Range by Conjugating Hybrid Structures

Author:

Kang Byung-HoORCID,Jeong In-Yong,Park Sung-HoonORCID

Abstract

In recent years, flexible and wearable strain sensors, consisting of a polymer matrix and a conducting filler, have received extensive attention owing to their physical advantages, such as being lightweight, stretchable, and having the potential for application to complex forms. However, achieving a low hysteresis of the relative change in resistance, wide sensing range, and reduced plastic deformation is still challenging. To address these issues, in this study, we developed hybrid conducting composites with a wide range of sensing abilities and low hysteresis. The bi-layer composites, comprising a carbon nanotube (CNT) composite layer with reinforced/conducting properties, and a natural rubber-based layer with extreme strain properties, could effectively circumvent their limitations. Compared to single-layer CNT composites, the bi-layer structure could increase the tensile strain with reduced plastic deformation, resulting in the prevention of surface cracks on the CNT composite. In addition, it has the benefit of measuring a wider sensing range, which cannot be measured in a single-CNT composite system. A cyclic stretching/releasing test was performed to demonstrate that the strain sensor exhibited excellent reproducibility. Our results can function as a useful design guide for stretchable sensor applications.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3