SAR Image Simulation of Complex Target including Multiple Scattering

Author:

Chiang Cheng-YenORCID,Chen Kun-ShanORCID,Yang Ying,Zhang Yang,Zhang Tong

Abstract

We present a GPU-based computation for simulating the synthetic aperture radar (SAR) image of the complex target. To be more realistic, we included the multiple scattering field and antenna pattern tracking in producing the SAR echo signal for both Stripmap and Spotlight modes. Of the signal chains, the computation of the backscattering field is the most computationally intensive. To resolve the issue, we implement a computation parallelization for SAR echo signal generation. By profiling, the overall processing was identified to find which is the heavy loading stage. To further accommodate the hardware structure, we made extensive modifications in the CUDA kernel function. As a result, the computation efficiency is much improved, with over 224 times the speed up. The computation complexity by comparing the CPU and GPU computations was provided. We validated the proposed simulation algorithm using canonical targets, including a perfectly electric conductor (PEC), dielectric spheres, and rotated/unrotated dihedral corner reflectors. Additionally, the targets can be a multi-layered dielectric coating or a layered medium. The latter case aimed to evaluate the polarimetric response quantitively. Then, we simulated a complex target with various poses relative to the SAR imaging geometry. We show that the simulated images have high fidelity in geometric and radiometric specifications. The decomposition of images from individual scattering bounce offers valuable exploitation of the scattering mechanisms responsible for imaging certain target features.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3