Synthesis of Saponite Based Nanocomposites to Improve the Controlled Oral Drug Release of Model Drug Quinine Hydrochloride Dihydrate

Author:

S. Kumaresan,Rama Pawar RadheshyamORCID,D. Kevadiya Bhavesh,C. Bajaj HariORCID

Abstract

In the present research study, a 2:1 type of smectite clay minerals, namely natural saponite (NSAP) and synthetic saponite (SSAP), was demonstrated for the first time to be controlled drug release host materials for the model drug quinine hydrochloride dihydrate (QU). The popular sol–gel hydrothermal technique was followed for the synthesis of saponite. The QU was ion exchanged and intercalated into an interlayered gallery of synthetic as well as natural saponite matrices. The developed QU-loaded hybrid composite materials along with the pristine materials were characterized by powder X-ray diffraction (PXRD), Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), the Brunauer–Emmett–Teller method (BET) for surface area (SA), and scanning electron microscopy (SEM). The characterization of material results using DSC, FTIR and PXRD confirmed the presence of saponite clay mineral phases in the original and the synthesized saponite samples. Similarly, the drug-loaded composites confirmed the successful intercalation of QU drug on the natural and synthesized saponite matrices. The oral drug release performance of both nanocomposites along with pure quinine drug was monitored in sequential buffer environments at 37 ± 0.5 °C. These composite hybrid materials showed the superior controlled release of QU in gastric fluid (pH = 1.2) and intestinal fluid (pH = 7.4). QU release was best fitted in the Korsmeyer–Peppas kinetic model and demonstrated a diffusion-controlled release from nanocomposite layered materials. The observed controlled drug release results suggest that the applied natural/synthetic saponite matrices have the potential to provide critical design parameters for the development of bioengineered materials for controlled drug release.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3