Numerical Calculation Scheme of Neutronics-Thermal-Mechanical Coupling in Solid State Reactor Core Based on Galerkin Finite Element Method

Author:

Yuan Baoxin,Zheng Jie,Wang Jian,Zeng Herong,Yang Wankui,Huang Huan,Zhang Songbao

Abstract

It is of practical significance to study the multi-physical processes of solid state nuclear systems for device design, safety analysis, and operation guidance. This system generally includes three multi-physical processes: neutronics, heat transfer, and thermoelasticity. In order to analyze the multi-physical field behavior of solid state nuclear system, it is necessary to analyze the laws of neutron flux, temperature, stress, and other physical fields in the system. Aiming at this scientific goal, this paper has carried out three aspects of work: (1) Based on Galerkin’s finite element theory, the governing equations of neutronics, heat transfer, and thermoelasticity have been established; (2) a neutronics-thermal-mechanical multi-physical finite element analysis code was developed and verified based on benchmark examples and third-party software for multi-physical processes; (3) for a solid state nuclear system with a typical heat pipe cooled reactor configuration, based on the analysis code developed in this work, the neutronics-thermal-mechanical coupling analysis was carried out, and the physical field laws such as neutron flux, temperature, stress, etc., of the device under the steady-state operating conditions were obtained; and (4) finally, the calculation results are discussed and analyzed, and the focus and direction of the next work are clarified.

Funder

National Key R&D Program

Guideline Project of China Academy of Engineering Physics, Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

1. Fiorina, C., Aufiero, M., Pelloni, S., and Mikityuk, K. (2014). 2014 Proceedings of the 22nd International Conference on Nuclear Engineering, American Society of Mechanical Engineers.

2. Neutronic and thermal-mechanical coupling analyses in a solid-state reactor using Monte Carlo and finite element methods;Ma;Ann. Nucl. Energy,2021

3. Coupled neutronic, thermal-mechanical and heat pipe analysis of a heat pipe cooled reactor;Ma;Nucl. Eng. Des.,2021

4. Neutronic and Thermal-Mechanical Coupling Schemes for Heat Pipe-Cooled Reactor Designs;Ma;J. Nucl. Eng. Radiat. Sci.,2022

5. Startup analyses of a megawatt heat pipe cooled reactor;Ma;Prog. Nucl. Energy,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3