Hybrid Weighted Least Square Multi-Verse Optimizer (WLS–MVO) Framework for Real-Time Estimation of Harmonics in Non-Linear Loads

Author:

Haseeb AbdulORCID,Waleed Umar,Ashraf Muhammad MansoorORCID,Siddiq Faisal,Rafiq Muhammad,Shafique MuhammadORCID

Abstract

The electric power quality has become a serious concern for electric utilities and end users owing to its undesirable effects on system capabilities and performance. Harmonic levels on power systems have been pronounced to a greater extent with the continuous growth in the application of solid-state and reactive power compensatory devices. Harmonics are the key constituents that are mainly responsible for power quality deterioration. Power system harmonics need to be correctly estimated and filtered to increase power quality. This research work focuses on accurate estimation of power system harmonics with the proposed hybrid weighted least-square multi-verse optimizer (WLS–MVO) based framework. Multi-verse optimizer replicates the phenomenon of the formation of new universes as described by multi-verse theory to solve complex real-world optimization problems. The proposed WLS–MVO framework is tested and validated by estimating the harmonics present in multiple test signals with different noise levels. Amplitudes and phases of harmonics present in the polluted signal were estimated, and the framework computational time was compared with the previously developed technique’s results which are reported in the literature. There was 80% reduction in computational time and 82% improvement in terms of accuracy in estimating harmonics using WLS–MVO as compared to previously developed techniques. The performance of the developed framework is further validated by estimating the harmonics present in the real-time voltage and current waveforms obtained from axial flux permanent magnet generator (AFPMSG), uninterruptible power supply (UPS), and light-emitting diode (LED). The purposed technique technique outperforms the already-developed techniques, in terms of accuracy and computational time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference44 articles.

1. A Hybrid Water Cycle Algorithm-Least Square based Framework for Robust Estimation of;Ashraf;Nucleus,2018

2. Review of power quality issues in solar and wind energy;Ezhiljenekkha;Mater. Today Proc.,2020

3. Robust extraction of harmonics using heuristic advanced gravitational search algorithm-based least square estimator;Ashraf;Nucleus,2018

4. Harmonics estimation in emerging power system: Key issues and challenges;Jain;Electr. Power Syst. Res.,2011

5. Bajaj, M., Aggarwal, S., and Singh, A.K. (March, January 28). Power quality concerns with integration of RESs into the smart power grid and associated mitigation techniques. Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3