A Novel Chiller Sensors Fault Diagnosis Method Based on Virtual Sensors

Author:

Gao LongORCID,Li Donghui,Li Ding,Yao Lele,Liang Limei,Gao Yanan

Abstract

Sensor fault detection and diagnosis (FDD) has great significance for ensuring the energy saving and normal operation of the air conditioning system. Chiller systems serving as an important part of central air conditioning systems are the major energy consumer in commercial and industrial buildings. In order to ensure the normal operation of the chiller system, virtual sensors have been proposed to detect and diagnose sensor faults. However, the performance of virtual sensors could be easily impacted by abnormal data. To solve this problem, virtual sensors combined with the maximal information coefficient (MIC) and a long short-term memory (LSTM) network is proposed for chiller sensor fault diagnosis. Firstly, MIC, which has the ability to quantify the degree of relevance in a data set, is applied to examine all potentially interesting relationships between sensors. Subsequently, sensors with high correlation are divided into several groups by the grouping thresholds. Two virtual sensors, which are constructed in each group by LSTM with different input sensors and corresponding to the same physical sensor, could have the ability to predict the value of physical sensors. High correlation sensors in each group improve the fitting effect of virtual sensors. Finally, sensor faults can be diagnosed by the absolute deviation which is generated by comparing the virtual sensors’ output with the actual value measured from the air-cooled chiller. The performance of the proposed method is evaluated by using a real data set. Experimental results indicate that virtual sensors can be well constructed and the proposed method achieves a significant performance along with a low false alarm rate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3