Abstract
Sensor fault detection and diagnosis (FDD) has great significance for ensuring the energy saving and normal operation of the air conditioning system. Chiller systems serving as an important part of central air conditioning systems are the major energy consumer in commercial and industrial buildings. In order to ensure the normal operation of the chiller system, virtual sensors have been proposed to detect and diagnose sensor faults. However, the performance of virtual sensors could be easily impacted by abnormal data. To solve this problem, virtual sensors combined with the maximal information coefficient (MIC) and a long short-term memory (LSTM) network is proposed for chiller sensor fault diagnosis. Firstly, MIC, which has the ability to quantify the degree of relevance in a data set, is applied to examine all potentially interesting relationships between sensors. Subsequently, sensors with high correlation are divided into several groups by the grouping thresholds. Two virtual sensors, which are constructed in each group by LSTM with different input sensors and corresponding to the same physical sensor, could have the ability to predict the value of physical sensors. High correlation sensors in each group improve the fitting effect of virtual sensors. Finally, sensor faults can be diagnosed by the absolute deviation which is generated by comparing the virtual sensors’ output with the actual value measured from the air-cooled chiller. The performance of the proposed method is evaluated by using a real data set. Experimental results indicate that virtual sensors can be well constructed and the proposed method achieves a significant performance along with a low false alarm rate.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference32 articles.
1. Review article: Methods for fault detection, diagnostics, and prognostics for building systems—A review, Part II;Brambley;HVAC R Res.,2005
2. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency;Zheng;Energy,2016
3. Chillers energy consumption, energy savings and emission analysis in an institutional buildings
4. Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I
5. A Fault Diagnosis Method for On Load Tap Changer of Aerospace Power Grid Based on the Current Detection
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献