Effect of the Fe2O3/SBA-15 Surface on Inducing Ozone Decomposition and Mass Transfer in Water

Author:

Yuan Lei1,Fang Lele2,Zhang Jizhou1,Yan Pengwei2ORCID,Chen Zhonglin2

Affiliation:

1. National and Provincial Joint Engineering Laboratory of Wetland Ecological Conservation, Heilongjiang Academy of Science, Harbin 150040, China

2. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China

Abstract

Catalytic ozonation with metal oxides is of interest for advanced water treatment technology. The amount of active oxygen-containing radicals produced is a primary objective of this process. Fe2O3 is a widely used catalyst because of its high performance. In this study, Fe2O3/SBA-15 was synthesized and characterized. The results revealed that Fe2O3/SBA-15 was a nano-/mesoporous material with high-order hexagonal array structures and exhibited greater catalytic performance than Fe2O3 in ozonation processes. To investigate the role of the Fe2O3/SBA-15 surface in O3 decomposition, the kinetic constant was measured, and the interfacial reactions were discussed. Compared with Fe2O3, Fe2O3/SBA-15 significantly increased the formation of hydroxyl radicals (•OH) and the efficient utilization of O3 in the catalytic O3 decomposition process. The SBA-15 support decreased the O3 self-decomposition rate during catalytic ozonation with Fe2O3/SBA-15, which resulted in increased formation of •OH via the reaction between O3 and Fe2O3. From a practical point of view, Fe2O3/SBA-15 is an efficient green ozonation catalyst for water treatment.

Funder

Science Foundation of Heilongjiang Provincial Institute

Heilongjiang Fund for Distinguished Young Scholars

Open Project of State Key Laboratory of Urban Water Resource and Environment

Natural Science Foundation Joint Guidance Project of Heilongjiang Province

Science Research Fund Project of Heilongjiang Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3