Analysis of the Spatial and Temporal Distribution of Process Gases within Municipal Biowaste Compost

Author:

Stegenta ORCID,Sobieraj ,Pilarski ,Koziel ORCID,Białowiec ORCID

Abstract

Composting processes reduce the weight and volume of biowaste and produce products that can be used in agriculture (e.g., as fertilizer). Despite the benefits of composting, there are also problems such as odors and the emission of pollutants into the atmosphere. This research aimed to investigate the phenomenon of process gas (CO, CO2, NO, O2) evolution within a large-scale municipal composter. The effects of turning frequency and pile location (outdoor vs. indoors) on process gas and temperature spatial and temporal evolution were studied in six piles (37‒81 tons of initial weight) over a six-month period. The biowaste consisted of green waste and municipal sewage sludge. The chemical composition and temperature of process gases within four cross sections with seven sampling locations were analyzed weekly for ~7–8 weeks (a total of 1375 cross sections). The aeration degree, temperature, CO, CO2, and NO concentration and their spatial and temporal distribution were analyzed. Final weight varied from 66% reduction to 7% weight gain. Only 8.2% of locations developed the desired chimney effect (utilizing natural buoyancy to facilitate passive aeration). Only 31.1% of locations reached thermophilic conditions (necessary to inactivate pathogens). Lower O2 levels corresponded with elevated CO2 concentrations. CO production increased in the initial composting phase. Winter piles were characterized by the lowest CO content. The most varied was the NO distribution in all conditions. The O2 concentration was lowest in the central part of the pile, and aeration conditions were good regardless of the technological regime used. Turning once a week was sufficient overall. Based on the results, the most favorable recommended procedure is turning twice a week for the first two weeks, followed by weekly turning for the next two weeks. After that, turning can be stopped unless additional removal of moisture is needed. In this case, weekly turning should continue until the process is completed. The size of the pile should follow the surface-to-volume ratio: <2.5 and <2 for cooler ambient conditions.

Funder

This work was supported by the Best-Eko Sp. z o.o. (Poland) as the research program

Fulbright Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3