Experimental Study on Gas Explosion Propagation in Porous Metal Materials

Author:

Jia Zhenzhen1ORCID,Ye Qing1

Affiliation:

1. School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

Serious damage and large losses often result from gas explosions in coal mining. However, porous metal materials can suppress a gas explosion and its propagation. Therefore, a gas explosion and its propagation suppression characteristics of porous metal materials are analyzed theoretically. According to the propagation characteristics of a gas explosion in duct, a gas-explosion experiment system with porous metal material (steel wire mesh) is constructed in this paper, and the propagations of explosion wave and flame in porous metal materials are experimentally studied. The study results show that the flame propagation velocity and overpressure of explosion wave are related to the length and layer number of porous metal materials. When the gas explosion propagates a certain distance in porous metal materials, the flame and explosion wave begin to be attenuated. The longer the length of porous metal material is, the better the attenuation effect is. At the same time, the more layer numbers, the better the attenuation effect is. In this experiment, the maximum decreases of explosion wave overpressure and flame propagation velocity are 84% and 91%, respectively. The attenuation of the explosion wave overpressure and the flame propagation velocity has synchronism and correspondence during gas explosion propagation in porous metal materials. The experimental results show the porous metal material has a good suppression effect on gas explosion propagation. The study results can provide an experimental basis for the development of gas explosion propagation suppression technology and devices, and have a great practical significance for the prevention and control of a gas explosion disaster.

Funder

National Natural Science Foundation Project of China

Scientific Research Fund of Hunan Provincial Education Department

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3