Abstract
Neuroblastoma (NB) is a tumor of the developing sympathetic nervous system. Despite recent advances in understanding the complexity of NB, the mechanisms that determine its regression or progression are still largely unknown. Stage 4S NB is characterized by a favorable course of disease and often by spontaneous regression, while progression to true stage 4 is a very rare event. Here, we focused on genomic analysis of an NB case that progressed from stage 4S to stage 4 with a very poor outcome. Array-comparative genomic hybridization (a-CGH) on tumor-tissue DNA, and whole-exome sequencing (WES) on exosomes DNA derived from plasma collected at the onset and at the tumor progression, pointed out relevant genetic changes that can explain this clinical worsening. The combination of a-CGH and WES data allowed for the identification iof somatic copy number aberrations and single-nucleotide variants in genes known to be responsible for aggressive NB. KLRB1, MAPK3 and FANCA genes, which were lost at the time of progression, were studied for their possible role in this event by analyzing in silico the impact of their expression on the outcome of 786 NB patients.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献