Research on Visual Perception of Speed Bumps for Intelligent Connected Vehicles Based on Lightweight FPNet

Author:

Wang Ruochen1,Luo Xiaoguo1ORCID,Ye Qing2,Jiang Yu1,Liu Wei1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

2. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

Abstract

In the field of intelligent connected vehicles, the precise and real-time identification of speed bumps is critically important for the safety of autonomous driving. To address the issue that existing visual perception algorithms struggle to simultaneously maintain identification accuracy and real-time performance amidst image distortion and complex environmental conditions, this study proposes an enhanced lightweight neural network framework, YOLOv5-FPNet. This framework strengthens perception capabilities in two key phases: feature extraction and loss constraint. Firstly, FPNet, based on FasterNet and Dynamic Snake Convolution, is developed to adaptively extract structural features of distorted speed bumps with accuracy. Subsequently, the C3-SFC module is proposed to augment the adaptability of the neck and head components to distorted features. Furthermore, the SimAM attention mechanism is embedded within the backbone to enhance the ability of key feature extraction. Finally, an adaptive loss function, Inner–WiseIoU, based on a dynamic non-monotonic focusing mechanism, is designed to improve the generalization and fitting ability of bounding boxes. Experimental evaluations on a custom speed bumps dataset demonstrate the superior performance of FPNet, with significant improvements in key metrics such as the mAP, mAP50_95, and FPS by 38.76%, 143.15%, and 51.23%, respectively, compared to conventional lightweight neural networks. Ablation studies confirm the effectiveness of the proposed improvements. This research provides a fast and accurate speed bump detection solution for autonomous vehicles, offering theoretical insights for obstacle recognition in intelligent vehicle systems.

Funder

National Natural Science Foundation of China

Young Scientist Fund of Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

cience and Technology Program of Zhenjiang City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3