Application of Emerging Cell Disintegration Techniques for the Accelerated Recovery of Curcuminoids from Curcuma longa

Author:

Le-Tan HoangORCID,Fauster Thomas,Vladic JelenaORCID,Gerhardt Tina,Haas Klara,Jaeger Henry

Abstract

Curcuminoids, the bioactive compounds with many beneficial effects on human health, exist in Curcuma longa (turmeric). In the present study, the impact of different cell disintegration techniques to enhance total curcuminoid recovery (TC) from fresh and dried turmeric was investigated. The impact of thermal pretreatment (TP), ultrasound pretreatment (UP), enzyme pretreatment (EP), and pulsed electric field pretreatment (PEF) on the recovery of curcumin (CUR), demethoxycurcumin (DMC), and bis-demethoxycurcumin (BDMC) from fresh and dried turmeric were studied. The cell disintegration index (Zp) and high-performance liquid chromatography (HPLC) analysis of curcuminoids were performed to evaluate the efficiency of the applied techniques. With fresh turmeric, the highest curcuminoid recovery was 83.6 mg/g dry basis with EP. The highest structural tissue damage was obtained with UP achieving a cell disintegration level of 92.5%. The technology with the highest time-saving and low specific energy input was PEF with a total curcuminoid recovery of 80.9 mg/g dry basis. Working with dried turmeric, the drying required high specific energy input for 72 h at 50 °C; however, the untreated dried sample reached 125.3 mg/g dry basis of TC without further pretreatment after drying.

Funder

OeAD-GmbH

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advancements in curcumin extraction, chemical/bio-synthesis, purification, and food applications;Critical Reviews in Food Science and Nutrition;2024-05-08

2. Turmeric starch: structure, functionality, and applications;Non-Conventional Starch Sources;2024

3. Curcuminoids;Handbook on Natural Pigments in Food and Beverages;2024

4. Effect of ultrasound homogenisation on the stability of curcumin microencapsulated by spray-drying;International Food Research Journal;2023-08-30

5. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions;International Journal of Molecular Sciences;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3