Multiple Optimizations-Based ESRFBN Super-Resolution Network Algorithm for MR Images

Author:

Liu Huanyu,Shao Mingmei,Pan Jeng-ShyangORCID,Li JunbaoORCID

Abstract

Magnetic resonance (MR) images can detect small pathological tissue with the size of 3–5 image pixels at an early stage, which is of great significance in the localization of pathological lesions and the diagnosis of disease. High-resolution MR images can provide clearer structural details and help doctors to analyze and diagnose the disease correctly. In this paper, MR super-resolution based on the multiple optimizations-based Enhanced Super Resolution Feed Back Network (ESRFBN) is proposed. The method realizes network optimization from the three perspectives of network structure, data characteristics and heterogeneous network integration. Firstly, a super-resolution network structure based on multi-slice input optimization is proposed to make full use of the structural similarity between samples. Secondly, aiming at the problem that the L1 or L2 loss function is based on a per-pixel comparison of differences, without considering human visual perception, the optimization method of multiple loss function cascade is proposed, which combines the L1 loss function to retain the color and brightness characteristics and the MS-SSIM loss function to retain the contrast characteristics of the high-frequency region better, so that the depth model has better characterization performance; thirdly, in view of the problem that large deep learning networks are difficult to balance model complexity and training difficulty, a heterogeneous network fusion method is proposed. For multiple independent deep super-resolution networks, the output of a single network is integrated through an additional fusion layer, which broadens the width of the network, and can effectively improve the mapping and characterization capabilities of high- and low-resolution features. The experimental results on two super-resolution scales and on MR images datasets of four human body parts show that the proposed large-sample space learning super-resolution method effectively improves the super-resolution performance.

Funder

National Science Foundation of China

Science and Technology Foundation of National Defense Key Laboratory of Science and Technology on Parallel and Distributed Processing Laborator

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3