AUV Path Planning Considering Ocean Current Disturbance Based on Cloud Desktop Technology

Author:

Hu Siyuan1ORCID,Xiao Shuai2ORCID,Yang Jiachen2ORCID,Zhang Zuochen3,Zhang Kunyu3,Zhu Yong24ORCID,Zhang Yubo45

Affiliation:

1. School of Future Technology, Tianjin University, Tianjin 300072, China

2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

3. Tianjin Zhuo Lang Technology Development Co., Ltd., Tianjin 300131, China

4. Tianjin Institute of Software Engineering, Tianjin 300387, China

5. School of Software, Tiangong University, Tianjin 300387, China

Abstract

In the field of ocean energy detection, Autonomous Underwater Vehicles (AUVs) offer significant advantages in terms of manpower, resource, and energy efficiency. However, the unpredictable nature of the ocean environment, particularly the real-time changes in ocean currents, poses navigational risks for AUVs. Therefore, effective path planning in dynamic environments is crucial for AUVs to perform specific tasks. This paper addresses the static path planning problem and proposes a model called the noise net double DQN network with prioritized experience replay (N-DDQNP). The N-DDQNP model combines a noise network and a prioritized experience replay mechanism to address the limited exploration and slow convergence speed issues of the DQN algorithm, which are caused by the greedy strategy and uniform sampling mechanism. The proposed approach involves constructing a double DQN network with a priority experience replay and an exploration mechanism using the noise network. Second, a compound reward function is formulated to take into account ocean current, distance, and safety factors, ensuring prompt feedback during the training process. Regarding the ocean current, the reward function is designed based on the angle between the current direction and the AUV’s heading direction, considering its impact on the AUV’s speed. As for the distance factor, the reward is determined by the Euclidean distance between the current position and the target point. Furthermore, the safety factor considers whether the AUV may collide with obstacles. By incorporating these three factors, the compound reward function is established. To evaluate the performance of the N-DDQNP model, experiments were conducted using real ocean data in various complex ocean environments. The results demonstrate that the path planning time of the N-DDQNP model outperforms other algorithms in different ocean current scenarios and obstacle environments. Furthermore, a user console-AUV connection has been established using spice cloud desktop technology. The cloud desktop architecture enables intuitive observation of the AUV’s navigation posture and the surrounding marine environment, facilitating safer and more efficient underwater exploration and marine resource detection tasks.

Funder

National Natural Science Foundation of China

Joint Fund of Ministry of Education for Equipment Pre-research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3