Enhanced Short-Term Load Forecasting Using Artificial Neural Networks

Author:

Arvanitidis Athanasios IoannisORCID,Bargiotas DimitriosORCID,Daskalopulu AspassiaORCID,Laitsos Vasileios M.,Tsoukalas Lefteri H.

Abstract

The modernization and optimization of current power systems are the objectives of research and development in the energy sector, which is motivated by the ever-increasing electricity demands. The goal of such research and development is to render power electronic equipment more controllable, to ensure maximal use of current circuits, system flexibility and efficiency, as well as the relatively easy integration of renewable energy resources at all voltage levels. The current revolution in communication technologies and the Internet of Things (IoT) offers us an opportunity to supervise and regulate the power grid, in order to achieve more reliable, efficient, and cost-effective services. One of the most critical aspects of efficient power system operation is the ability to predict energy load requirements, i.e., load forecasting. Load forecasting is essential for balancing demand and supply and for determining electricity prices. Typically, load forecasting has been supported through the use of Artificial Neural Networks (ANNs), which, once trained on a set of data, can predict future loads. The accuracy of the ANNs’ prediction depends on the quality and availability of the training data. In this paper, we propose novel data pre-processing strategies, which we apply to the data used to train an ANN, and subsequently evaluate the quality of the predictions it produces, to demonstrate the benefits gained. The proposed strategies and the obtained results are illustrated using consumption data from the Greek interconnected power system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3