Glucose Regulates Glucose Transport and Metabolism via mTOR Signaling Pathway in Bovine Placental Trophoblast Cells

Author:

Shi Liyuan1,Kang Kun1,Wang Zhisheng1,Wang Junmei1,Xiao Jianxin1,Peng Quanhui1,Hu Rui1,Zhou Jia1,Zhang Xiaohong1,Yue Ziqi1,Zou Huawei1,Xue Bai1,Wang Lizhi1

Affiliation:

1. Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China

Abstract

It has been confirmed that improving the energy level of the diet contributed to the greater reproductive performance and birth weight of calves in periparturient dairy cows. To investigate the effect of glucose on nutrient transport during fetal development, the bovine placental trophoblast cells (BPTCs) were cultured in media with different glucose concentrations (1, 2, 4, 8, or 16 mg/mL). Subsequently, the BPTCs were cultured in media with 1, 8 mg/mL glucose and 8 mg/mL glucose plus 100 nmol/L rapamycin (the inhibitor of mTOR pathway). Compared with the 1 mg/mL glucose, the addition of 8 mg/mL glucose stimulated cell proliferation, upregulated the mRNA abundance of the glucose transporter GLUT1 and GLUT4, and increased the activity of glucose metabolism-related enzyme glucose-6-phosphate dehydrogenease (G6PD), lactate dehydrogenase (LDHA) and phosphoglycerate kinase 1 (PGK1), as well as adenosine-triphosphate (ATP) content (p < 0.05).Furthermore, compared with the treatment of 1 mg/mL glucose, adding 8 mg/mL of glucose-upregulated gene expression in the mTOR signaling pathway, including phosphatidylinositol3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase 2 (P70S6K) (p < 0.05).The supplementation of rapamycin downregulated the gene and protein expression of the mTOR signaling pathway, including mTOR, P70S6K, EIF4E-binding protein 1 (4EBP1), hypoxia-inducible factor 1-alpha (HIF-1α) and gene expression of glucose transporter upregulated by 8 mg/mL glucose (p < 0.05). Thus, these results indicated that the addition of 8 mg/mL glucose regulated the glucose transport and metabolism in BPTCs through the mTOR signaling pathway, thereby promoting the supply of nutrients to fetus.

Funder

Sichuan Science and Technology Program

China Agriculture (Beef Cattle/Yak) Research System of MOF and MARA

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3