Nanocomposite Photoanisotropic Materials for Applications in Polarization Holography and Photonics

Author:

Nazarova Dimana12ORCID,Nedelchev Lian12ORCID,Berberova-Buhova Nataliya12,Mateev Georgi12

Affiliation:

1. Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2. Department of Physics, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria

Abstract

Photoanisotropic materials, in particular azodyes and azopolymers, have attracted significant research interest in the last decades. This is due to their applications in polarization holography and 4G optics, enabling polarization-selective diffractive optical elements with unique properties, including circular polarization beam-splitters, polarization-selective bifocal lenses, and many others. Numerous methods have been applied to increase the photoinduced birefringence of these materials, and as a result, to obtain polarization holographic elements with a high diffraction efficiency. Recently, a new approach has emerged that has been extensively studied by many research groups, namely doping azobenzene-containing materials with nanoparticles with various compositions, sizes, and morphologies. The resulting nanocomposites have shown significant enhancement in their photoanisotropic response, including increased photoinduced birefringence, leading to a higher diffraction efficiency and a larger surface relief modulation in the case of polarization holographic recordings. This review aims to cover the most important achievements in this new but fast-growing field of research and to present an extensive comparative analysis of the result, reported by many research groups during the last two decades. Different hypotheses to explain the mechanism of photoanisotropy enhancement in these nanocomposites are also discussed. Finally, we present our vision for the future development of this scientific field and outline its potential applications in advanced photonics technologies.

Funder

European Union-NextGenerationEU, National Recovery and Resilience Plan of the Republic of Bulgaria

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3