Abstract
Terrain derivatives exhibit surface morphology in various aspects. However, existing spatial change calculation methods for terrain derivatives are based on a mathematical scalar operating system, which may disregard the directional property of the original data to a certain extent. This situation is particularly true in second-order terrain derivatives, in which original data can be terrain derivatives with clear directional properties, such as slope or aspect. Thus, this study proposes a mathematical vector operation method for the calculation of second-order terrain derivatives. Given the examples of the first-order terrain derivatives of slope and aspect, their second-order terrain derivatives are calculated using the proposed vector method. Directional properties are considered and vectorized using the following steps: rotation-type judgment, standardization of initial direction, and vector representation. The proposed vector method is applied to one mathematical Gaussian surface and three different ground landform areas using digital elevation models (DEMs) with 5 and 1 m resolutions. Comparison analysis results between the vector and scalar methods show that the former achieves more reasonable and accurate second-order terrain derivatives than the latter. Moreover, the vector method avoids overexpression or even exaggeration errors. This vector operation concept and its expanded methods can be applied in calculating other terrain derivatives in geomorphometry.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献