A Vector Operation to Extract Second-Order Terrain Derivatives from Digital Elevation Models

Author:

Hu Guanghui,Dai Wen,Li Sijin,Xiong LiyangORCID,Tang Guoan

Abstract

Terrain derivatives exhibit surface morphology in various aspects. However, existing spatial change calculation methods for terrain derivatives are based on a mathematical scalar operating system, which may disregard the directional property of the original data to a certain extent. This situation is particularly true in second-order terrain derivatives, in which original data can be terrain derivatives with clear directional properties, such as slope or aspect. Thus, this study proposes a mathematical vector operation method for the calculation of second-order terrain derivatives. Given the examples of the first-order terrain derivatives of slope and aspect, their second-order terrain derivatives are calculated using the proposed vector method. Directional properties are considered and vectorized using the following steps: rotation-type judgment, standardization of initial direction, and vector representation. The proposed vector method is applied to one mathematical Gaussian surface and three different ground landform areas using digital elevation models (DEMs) with 5 and 1 m resolutions. Comparison analysis results between the vector and scalar methods show that the former achieves more reasonable and accurate second-order terrain derivatives than the latter. Moreover, the vector method avoids overexpression or even exaggeration errors. This vector operation concept and its expanded methods can be applied in calculating other terrain derivatives in geomorphometry.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. Digital Terrain Analysis in Soil Science and Geology;Florinsky,2016

2. Environmental Applications of Digital Terrain Modeling;Wilson,2018

3. A peak-cluster assessment method for the identification of upland planation surfaces

4. An illustrated introduction to general geomorphometry

5. Geomorphometry and landform mapping: What is a landform?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3