Surface-Modified Electrospun Glass Nanofibers from Silane Treatment and Their Use for High-Performance Epoxy-Based Nanocomposite Materials

Author:

Mali Abhijeet1,Agbo Philip1,Mantripragada Shobha1,Zhang Lifeng1ORCID

Affiliation:

1. Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA

Abstract

As a new and promising reinforcing filler, electrospun glass nanofibers (EGNFs) have attracted attention in the field of polymer composite materials. However, the reinforcing effectiveness of surface-modified EGNFs using different silane coupling agents in epoxy resin is still not quite clear. In this research, a series of silane coupling agents with increasing chain lengths in the order of methyl trimethoxysilane (MTMS), (3-aminopropyl) triethoxysilane (APTES), (3-glycidyloxypropyl) trimethoxysilane (GPTMS), and dual silane coupling agent APTES–GPTMS were employed to carry out surface treatment on the EGNFs. The pristine and silane functionalized EGNFs were then incorporated into epoxy resin as reinforcing fillers at low loading levels, i.e., 0.25 wt.%, 0.5 wt.%, and 1 wt.%, and the mechanical properties of the resultant epoxy nanocomposites, including strength, stiffness, ductility, and toughness, were evaluated. A commercial product of glass nanoparticles (GNPs) was used as a control to compare the reinforcing effectiveness of the EGNFs and the GNPs. This study revealed that the EGNFs could provide significant reinforcing and toughening effects at ultra-low loading (0.25 wt.%) in epoxy nanocomposite materials. Furthermore, surface modification of the EGNFs with silane coupling agents with long chain lengths, e.g., by using dual silane coupling agents, APTES–GPTMS, could enhance the interfacial bonding between the EGNFs and the epoxy matrix and further increase the mechanical performance of the EGNF-reinforced epoxy nanocomposite materials. Through this research, we realized epoxy nanocomposite materials with much-improved mechanical properties, i.e., 37%, 24%, 18%, 57% improvement in strength, stiffness, ductility, and toughness, respectively, with respect to those of the cured neat epoxy material with an ultra-low loading (0.25 wt.%) of APTES–GPTMS–EGNFs. Our research paves the road for developing lighter and stronger epoxy nanocomposite materials with EGNFs.

Funder

U.S. Army Combat Capabilities Development Command—Soldier Center

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3