Estimates of the Decarbonization Potential of Alternative Fuels for Shipping as a Function of Vessel Type, Cargo, and Voyage

Author:

Law Li ChinORCID,Mastorakos EpaminondasORCID,Evans Stephen

Abstract

Fuel transition can decarbonize shipping and help meet IMO 2050 goals. In this paper, HFO with CCS, LNG with CCS, bio-methanol, biodiesel, hydrogen, ammonia, and electricity were studied using empirical ship design models from a fleet-level perspective and at the Tank-To-Wake level, to assist operators, technology developers, and policy makers. The cargo attainment rate CAR (i.e., cargo that must be displaced due to the low-C propulsion system), the ES (i.e., TTW energy needed per ton*n.m.), the CS (economic cost per ton*n.m.), and the carbon intensity index CII (gCO2 per ton*n.m.) were calculated so that the potential of the various alternatives can be compared quantitatively as a function of different criteria. The sensitivity of CAR towards ship type, fuel type, cargo type, and voyage distance were investigated. All ship types had similar CAR estimates, which implies that considerations concerning fuel transition apply equally to all ships (cargo, containership, tankers). Cargo type was the most sensitive factor that made a ship either weight or volume critical, indirectly impacting on the CAR of different fuels; for example, a hydrogen ship is weight-critical and has 2.3% higher CAR than the reference HFO ship at 20,000 nm. Voyage distance and fuel type could result in up to 48.51% and 11.75% of CAR reduction. In addition to CAR, the ES, CS, and CII for a typical mission were calculated and it was found that HFO and LNG with CCS gave about 20% higher ES and CS than HFO, and biodiesel had twice the cost, while ammonia, methanol, and hydrogen had 3–4 times the CS of HFO and electricity about 20 times, suggesting that decarbonisation of the world’s fleet will come at a large cost. As an example of including all factors in an effort to create a normalized scoring system, an equal weight was allocated to each index (CAR, ES, CS, and CII). Biodiesel achieved the highest score (80%) and was identified as the alternative with the highest potential for a deep-seagoing containership, followed by ammonia, hydrogen, bio-methanol, and CCS. Electricity has the lowest normalized score of 33%. A total of 100% CAR is achievable by all alternative fuels, but with compromises in voyage distance or with refuelling. For example, a battery containership carrying an equal amount of cargo as an HFO-fuelled containership can only complete 13% of the voyage distance or needs refuelling seven times to complete 10,000 n.m. The results can guide decarbonization strategies at the fleet level and can help optimise emissions as a function of specific missions.

Funder

National Research Foundation (NRF), Prime Minister’s Office, Singapore

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. Fourth IMO Greenhouse Gas Study,2020

2. Final Report—Framework CO2 Reduction in Shipping,2017

3. Optimal ship speed and the cubic law revisited: Empirical evidence from an oil tanker fleet

4. Prediction of ships’ speed-power relationship at speed intervals below the design speed

5. Liquified Natural Gas (LNG) as Fuel for The Shipping Industry;Singh;Marine Insight,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3