Numerical Study on Infrared Radiation Characteristics of Stealth Coating for Turbofan Engine Tail Nozzle

Author:

Yuan YuweiORCID,Zeng Hao,Li Yiwen,He Liming,Chen Lihai

Abstract

Infrared stealth technology plays a vital role in improving the survivability of future aircraft. The exhaust system is the main source of infrared radiation on the rear side of the aircraft, and stealth coating is an effective measure to reduce the infrared radiation on the solid wall of the nozzle. Mature commercial computational fluid dynamics software was used to obtain and analyze accurate data of the flow field to study the infrared radiation characteristics of the stealth coating on the turbofan engine nozzle. Furthermore, infrared simulation software based on the reverse Monte Carlo method, line-by-line calculation technique, and database technology for high-temperature gas parameters of a narrowband model were used to numerically simulate the exhaust system of a turbofan engine with infrared suppression coating. Assuming that the damage percentage of the external adjusting plate is constant, the findings reveal that the overall infrared radiation intensity exhibits a steadily increasing trend with the increase in the number of damaged adjusting plates. The maximum change in the infrared radiation intensity between eight damaged adjusting plates and one damaged adjusting plate was 11.67%. Thus, regular inspection and maintenance are required for the stealth coating on the external adjusting plate of the aero-engine tail nozzle to maintain stealth integrity.

Funder

Natural Science Fund of Shaanxi Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

1. Aircraft Overall Design;Li,2005

2. Investigation on aerodynamic design and infrared radiation characteristics of s-shaped nozzle with complicated variable cross-section;Bin;Trainer,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3