Feasibility Study and Economic Analysis of a Fuel-Cell-Based CHP System for a Comprehensive Sports Center with an Indoor Swimming Pool

Author:

Liu JieORCID,Kim Sung-Chul,Shin Ki-YeolORCID

Abstract

Unlike a general commercial building, heating for a building with an indoor swimming pool is highly energy-intensive due to the high energy demand for swimming water heating. In Korea, the conventional heating method for this kind of building is to use boilers and heat storage tanks that have high fuel costs and greenhouse gas emissions. In this study, a combined heat and power (CHP) system for such a building using the electricity and waste heat from a Phosphoric Acid Fuel Cell (PAFC) system was designed and analyzed in terms of its primary energy saving, CO2 reduction, fuel cell and CHP efficiency, and economic feasibility. The mathematical model of the thermal load evaluation was used with the 3D multi-zone building model in TRNSYS 18 software (Thermal Energy System Specialists, LLC, Madison, MI, USA) to determine the space heating demand and swimming pool heat losses. The energy efficiency of the fuel cell unit was evaluated as a function of the part-load ratio from the operating data. The fundamental components, such as the auxiliary boiler, thermal storage tank, and heat exchanger are also integrated for the simulation of the system’s operation. The result shows that the system has a high potential to improve the utilization efficiency of fuel cell energy production. Referring to the local condition of the energy market in Korea, an economic analysis was also carried out by using a specific FC-CHP capacity at 440 kW. The economic benefit is significant in comparison with a conventional heating system, especially for the full-time operating (FTO) mode. The net profit made by comparison with the conventional energy supply system is about 178,352 to 273,879 USD per year, and the payback period is expected to be 6.9 to 10.7 years under different market conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3