A Real-Time Energy Management System Design for a Developed PV-Based Distributed Generator Considering the Grid Code Requirements in Turkey

Author:

Bayrak GökayORCID,Ertekin DavutORCID,Haes Alhelou HassanORCID,Siano PierluigiORCID

Abstract

Each country must determine the Grid Code conditions and apply these criteria to integrate distributed generation (DG) systems into the existing electricity grid and to ensure a stable power system. Thus, experimental studies are required to provide an effective, national, and specific Grid Code. In this study, the Turkish Grid Code’s electrical criteria were examined, and the application of these criteria was carried out on a developed PV-based DG. A real-time energy management system (RTEMS) was proposed in the study. Electrical parameters on the developed DG were monitored in real-time by considering IEEE 1547, IEEE 929–2000, and Turkey’s electrical criteria. A practical grid code study was firstly investigated in detail about the Turkish Grid Code by a developed real-time monitoring-control and protection system. The proposed RTEMS method in the study is implemented as an inverter-resident system; thus, it provides advantages over many energy management systems embedded in the inverter. The degradation in power quality and non-detection zone (NDZ) problems encountered in active and passive island mode detection methods developed embedded in the inverter are eliminated in the proposed method. With the RTEMS method, where under and over-voltage, under and over voltage frequency, and unintentional island mode events can be detected in real-time, both the existing grid-code requirements are met, and the existing power quality and NDZ problem is eliminated with the recommended inverter-independent RTEMS method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3