Effect of Forecast Climate Changes on Water Needs of Giant Miscanthus Cultivated in the Kuyavia Region in Poland

Author:

Rolbiecki StanisławORCID,Biniak-Pieróg MałgorzataORCID,Żyromski AndrzejORCID,Kasperska-Wołowicz WiesławaORCID,Jagosz BarbaraORCID,Stachowski PiotrORCID,Liberacki DanielORCID,Kanecka-Geszke Ewa,Sadan Hicran A.,Rolbiecki RomanORCID,Pal-Fam FerencORCID,Ptach Wiesław

Abstract

Giant miscanthus is a vigorously growing energy plant, popularly used for biofuels production. It is a grass with low soil and water requirements, although its productivity largely depends on complementary irrigation, especially in the first year of cultivation. The aim of the study was to assess the impact of the forecast climate changes, mainly air temperature increase, on the water needs of giant miscanthus during the growing season in 2021–2050 in the Kuyavia region (central Poland). The years 1981–2010 as the reference period were applied. The meteorological data was based on the regional climate change model RM5.1 with boundary conditions from the global ARPEGE model for the SRES A1B emission scenario. Crop evapotranspiration, calculated using the Penman-Monteith method and crop coefficients, was assumed as a measure of water needs. The study results showed that in view of the expected temperature changes, in the forecast period 2021–2050, the giant miscanthus water needs will increase by 10%. The highest monthly increase may occur in August (16%) and in September (23%). In the near future, the increase in water needs of giant miscanthus will necessitate the use of supplementary irrigation. Hence the results of this study may contribute to increasing the efficiency of water use, and thus to the rational management of irrigation treatments and plant energy resources in the Kuyavia region.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3