Simulation of Cooling Island Effect in Blue-Green Space Based on Multi-Scale Coupling Model

Author:

Pan Ziwu12,Xie Zunyi12,Wu Liyang12,Pan Yu3,Ding Na12,Liang Qiushuang12,Qin Fen12

Affiliation:

1. College of Geography and Environmental Science, Henan University, Kaifeng 475001, China

2. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Kaifeng 475001, China

3. College of Forestry, Guizhou University, Guiyang 550025, China

Abstract

The mitigation of the urban heat island effect is increasingly imperative in light of climate change. Blue–green space, integrating water bodies and green spaces, has been demonstrated to be an effective strategy for reducing the urban heat island effect and enhancing the urban environment. However, there is a lack of coupled analysis on the cooling island effect of blue–green space at the meso-micro scale, with previous studies predominantly focusing on the heat island effect. This study coupled the single urban canopy model (UCM) with the mesoscale Weather Research and Forecasting (WRF) numerical model to simulate the cooling island effect of blue–green space in the Eastern Sea-River-Stream-Lake Linkage Zone (ESLZ) within the northern subtropical zone. In particular, we comparatively investigated the cooling island effect of micro-scale blue–green space via three mitigation strategies of increasing vegetation, water bodies, and coupling blue–green space, using the temperature data at the block scale within 100 m square of the urban center on the hottest day in summer. Results showed that the longitudinally distributed lakes and rivers in the city had a significant cooling effect on the ambient air temperature (Ta) at the mesoscale, with the largest cooling range occurring during the daytime and ranging from 1.01 to 2.15 °C. In contrast, a 5~20% increase in vegetation coverage or 5~15% increase in water coverage at the micro-scale was observed to reduce day and night Ta by 0.71 °C. Additionally, the most significant decrease in physiologically equivalent temperature (PET) was found in the mid-rise building environment, with a reduction of 2.65–3.26 °C between 11:00 and 13:00 h, and an average decrease of 1.25°C during the day. This study aims to guide the optimization of blue–green space planning at the meso-micro scale for the fast-development and expansion of new urban agglomerations.

Funder

National Science and Technology Infrastructure of China

Major Projects of the Ministry of Education

Data Sharing Infrastructure of Earth System Science Data Centre of the Lower Yellow River Region

Geospatial Data Cloud site

Climatic Research Unit, University of East Anglia, Computer Network Information Center, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3