Monitoring the Vegetation Dynamics in the Dongting Lake Wetland from 2000 to 2019 Using the BEAST Algorithm Based on Dense Landsat Time Series

Author:

Cai YaotongORCID,Liu Shutong,Lin Hui

Abstract

The dynamic monitoring and analysis of wetland vegetation play important roles in revealing the change, restoration and reconstruction of the ecosystem environment. The increasing availability of high spatial-temporal resolution remote sensing data provides an unprecedented opportunity for wetland dynamic monitoring and change detection. Using the reconstructed dense monthly Landsat time series, this study focuses on the continuous monitoring of vegetation dynamics in Dongting Lake wetland, south China, in the last two decades (2000–2019) by using the Bayesian estimator of abrupt change, seasonal change, and trend (BEAST) method. Firstly, the flexible spatiotemporal data fusion (FSDAF) model is applied to blend Landsat and moderate-resolution imaging spectroradiometer (MODIS) images on the basis of the input image pair selection strategy named “cross-fusion” to generate the monthly time-series normalized difference vegetation index (NDVI) with the spatial resolution of 30 m. Then, the abrupt changes, trend, and seasonality of the vegetation in the study area as well as the uncertainties of change detection are estimated by the BEAST method. Results show that there is a close relationship between the ground true data and the estimated changepoints. A high overall accuracy (OA) of 87.37% and Kappa coefficient of 0.85 were achieved by the proposed framework. Additionally, the temporal validation got the interval intersection of 86.57% and the absolute difference of mean interval length of 6.8 days. All of the results demonstrate that the vegetation changes in the Dongting Lake wetland varied spatially and temporally in the last two decades, because of extreme weathers and anthropogenic factors. The presented approach can accurately identify the vegetation changes and time of disturbance in both the spatial and temporal domains, and also can retrieve the evolution process of wetland vegetation under the influence of climate changes and human activities. Therefore, it can be used to reveal potential causes of the degradation and recovery of wetland vegetation in subtropical areas.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3