Non-Isolated DC-DC Converters in Fuel Cell Applications: Thermal Analysis and Reliability Comparison

Author:

Alavi OmidORCID,Rajabloo TaliehORCID,De Ceuninck Ward,Daenen MichaëlORCID

Abstract

An alternative energy source that has appeared beyond expectations and has seen a lot of progress is the fuel cell. A proton exchange membrane (PEM) fuel cell is chosen for analysis and requires a DC-DC boost converter as an interface between the fuel cell and the load to provide a high-gain regulated voltage. Although great effort towards developing different converter topologies has been made during recent decades, less attention has been devoted to the reliability and thermal performance assessment of the present converters. In this paper, five non-isolated DC-DC converters are analyzed in terms of both thermal behavior and reliability. The temperature estimation of semiconductor devices as a critical part of the thermal analysis has been made via a detailed thermal model and the reliability is evaluated by means of a power cycling test. Finally, a performance score has been attributed using the TOPSIS ranking methodology and considering all the criteria (e.g., the number of components and cost) at the same time. The results indicated that the floating interleaved boost converter is always at the top of the list, even if the weight of the indicators is changed. When the weight of the cost criterion is higher than the reliability criterion, the multi-switch boost converter will be in second place. If the weight of the reliability criterion is greater than cost, the interleaved and multi-switch converter are ranked second and third, respectively. Additionally, the Cuk converter with a closeness coefficient of zero is always associated with the most unfavorable performance.

Funder

Met de steun van het Energietransitiefonds

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3