Abstract
Efficient and reliable path planning is crucial for smart ships when avoiding collisions with static and dynamic obstacles in complex marine environments. This research proposes a novel path planning method based on the fast marching method to specifically assist with safe navigation for autonomous ships. At the very beginning, a unified representation is specially produced to describe the path planning space based on the parametric fast marching speed function. In addition, the spatial–temporal interaction effects of dynamic obstacles are considered and integrated into the construction of planning space. Subsequently, a path optimization strategy is put forward based on the trajectory prediction of dynamic objects. Particularly, the effectiveness of the method has been validated and evaluated through a number of simulations, which proves that such a method is practical in narrow and crowded waterways.
Funder
National Key R&D Program of China
National Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献