Numerical Simulation of the Enrichment of Chemotactic Bacteria in Oil-Water Two-Phase Transfer Fields of Heterogeneous Porous Media

Author:

Wang Xiaopu,Hou Lianjie,He Tianhao,Diao Zhenhan,Yao Chuanjin,Long Tao,Fan Ling

Abstract

Oil pollution in soil-groundwater systems is difficult to remove, and a large amount of residual oil is trapped in the low permeable layer of the heterogeneous aquifer. Aromatic hydrocarbons in oil have high toxicity and low solubility in water, which are harmful to the ecological environment. Chemotactic degrading bacteria can perceive the concentration gradient of non-aqueous phase liquid (NAPL) pollutants in the groundwater environment, and enrich and proliferate around the pollutants, thus achieving a more efficient and thorough remediation effect. However, the existing theoretical models are relatively simple. The physical fields of oil–water two-phase flow and oil-phase solute convection and diffusion in water are not coupled, which further restricts the accuracy of studies on bacterial chemotaxis to NAPL. In this study, geometric models based on the actual microfluidic experimental study were constructed. Based on the phase field model, diffusion convection equation and chemotaxis velocity equation, the effects of heterogeneity of porous media, wall wettability and groundwater flow rate on the residual oil and the concentration distribution of chemotaxis bacteria were studied. Under all of the simulation conditions, the residual oil in the high permeable area was significantly lower than that in the low permeable area, and the wall hydrophilicity enhanced the water flooding effect. Chemotactic bacteria could react to the concentration gradient of pollutants dissolved into water in the oil phase, and enrich near the oil–water interface with high concentration of NAPL, and the density of chemotactic bacteria at the oil–water interface can be up to 1.8–2 times higher than that in the water phase at flow rates from 1.13 to 6.78 m/d.

Funder

Opening Fund of Shandong Key Laboratory of Oilfield Chemistry and the Fundamental Re-search Funds for the Central Universities

Shandong Provincial Natural Science Foundation

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3