The Effects of Temperature and Time of Heat Treatment on Thermo-Mechanical Properties of Custom-Made NiTi Orthodontic Closed Coil Springs

Author:

Assawakawintip Thanate,Santiwong Peerapong,Khantachawana Anak,Sipiyaruk KawinORCID,Chintavalakorn Rochaya

Abstract

Nickel-Titanium (NiTi) springs have been increasingly used in orthodontics; however, no optimum condition of heat treatment has been reported. Therefore, this research was conducted to determine the optimum heat-treatment temperature and duration for the fabrication of NiTi-closed coil springs by investigating their effects on thermo-mechanical properties. As-drawn straight NiTi wires of 0.2 mm diameter were used to fabricate closed coil springs of 0.9 mm lumen diameter. The springs were heat-treated at three different temperatures (400, 450, and 500 °C) with three different durations (20, 40, and 60 min). Electron Probe Micro-Analysis (EPMA) and Differential Scanning Calorimetry (DSC) were used to investigate element composition and thermo-mechanical properties, respectively. Custom-made NiTi closed coil springs composed of 49.41%-Ti and 50.57%-Ni by atomic weight, where their DSC curves of 500 °C presented the obvious endothermic and exothermic peaks, and the austenite finish temperature (Af) were approximately 25 °C. With increasing temperature, deactivation curves presented decreased plateau slopes generating higher superelastic ratios (SE ratios). At 500 °C, closed coil springs showed superelastic tendency with lower stress hysteresis. The thermo-mechanical properties were significantly influenced by heat-treatment temperature rather than duration. The optimum parameter appeared to be 500 °C for 40 min to produce appropriate force delivery levels, relatively low plateau slope, and lower hysteresis for orthodontic use.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3