Long Baseline Tightly Coupled DGNSS Positioning with Ionosphere-Free Inter-System Bias Calibration

Author:

Cheng Jianhua,Jiang Chao,Li Liang,Jia Chun,Qi Bing,Li JiaxiangORCID

Abstract

Based on the statistical stability of the inter-system bias (ISB), we propose a tightly coupled Differential Global Navigation Satellite System (DGNSS) positioning method by using ionosphere-free combination for the long baseline applications. The proposed method is compatible with the traditional Radio Beacon (RBN) base station implementation. The tightly coupled DGNSS positioning method is utilized at the long baseline rover by eliminating the effect of ionosphere delay with ionosphere-free (IF) based differential ISB calibration. The improved positioning model strength can be obtained with the proposed method when compared with the traditional loosely coupled method, particularly under the satellite-deprived environment. GNSS datasets of different baselines were collected to test the proposed method. The results of the ISB stability show that the ISB has long-term stability and needs to be calibrated when the receiver is rebooted. The positioning results show that when compared with the IF-based loosely coupled method, the IF-based tightly coupled DGNSS method based on ISB calibration can obtain better positioning performance of accuracy and continuity within 240 km baselines.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3