Nano-Sized Graphene Oxide Attenuates Ovalbumin/Alum-Induced Skin Inflammation by Down-Regulating Th2 Immune Responses in Balb/c Mice

Author:

Park Hyun Jung1ORCID,Lee Sung Won2,Van Kaer Luc3ORCID,Hong Suklyun4ORCID,Hong Seokmann1ORCID

Affiliation:

1. Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea

2. Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju 26339, Republic of Korea

3. Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

4. Department of Physics, Graphene Research Institute, and GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea

Abstract

Graphene oxide (GO), a carbon-based material with oxygen-containing functional groups, can be applied in biomedicine for drug delivery, cancer therapy, and tissue regeneration. We have previously shown that nanoscale-sized graphene oxide (NGO), an oxidized graphene derivative, exhibits effective anti-inflammatory activity in a murine model of sepsis mediated by T helper (Th)1-promoting cytokines such as IFNγ and TNFα. However, whether NGO influences Th2-induced skin inflammation remains unclear. To address this issue, we employed an ovalbumin (OVA) plus aluminum hydroxide (Alum)-induced Th2-mediated skin inflammation model in conjunction with OVA-specific DO11.10 T cell receptor transgenic Balb/c mice. In vivo NGO injection upon OVA/Alum sensitization down-regulated OVA-elicited antigen-specific Th2 cells and GATA3-expressing Th2-type regulatory T cells. Next, we examined the effect of NGO injection on OVA/Alum-induced atopic dermatitis (AD)-like skin inflammation. NGO-injected mice exhibited significantly decreased Th2 disease phenotypes (e.g., a lower clinical score, decreased epidermal thickness and Th2 cell differentiation, and fewer infiltrated mast cells and basophils in skin lesions) compared with vehicle-injected control mice. Overall, our results suggest that NGOs are promising therapeutic materials for treating allergic diseases such as AD.

Funder

National Research Foundation of Korea (NRF) funded by the Ministry of Education

Global Research and Development Center Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3