Industrial Source Contributions and Health Risk Assessment of Fine Particle-Bound Polycyclic Aromatic Hydrocarbons (PAHs) during Spring and Late Summer in the Baoshan Area, Shanghai

Author:

Wang WeiqianORCID,Wang QingyueORCID,Nakajima Daisuke,Lu SenlinORCID,Xiao KaiORCID,Chowdhury Tanzin,Suzuki Miho,Liu Fenwu

Abstract

The main objective of this study was to examine the chemical characteristics, possible sources, and health risks of fine particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) in the Baoshan area of Shanghai. Here, ambient particles with five-size ranges were collected during the spring and late summer of 2017. The PAHs were determined by the Gas Chromatography-Mass Spectrometry (GC-MS). Our results showed that the average mass concentration of 13 species of PAHs in spring and in late summer was 4.83 (1.88~12.1) ng/m3 and 4.27 (2.09~5.75) ng/m3 in Total Suspended Particles (TSPs), respectively. The higher PAH ratios (PM1.1/TSPs) indicated that PAHs are mainly concentrated in PM1.1, especially in late summer. The values of BaA/(BaA+CHR) were under 0.50 and IcdP/(IcdP+BghiP) were in range from 0.20 to 0.50 for TSP and PM1.1, suggesting that petroleum combustion and diesel emissions could be considered as key sources of PAHs, which tend to be associated with PM1.1. Moreover, the Principal Component Analysis (PCA) in PM1.1 identified the main PH sources, which include stationary and diesel emissions. The air mass backward trajectories and wind direction analysis showed that air masses were mainly derived from marine sources across the local industry area in late summer. Individual Carcinogenic Risk Inhalation (ILCR) was over 10−6 among the total six age groups in both of the sampling periods in TSPs, indicating the possible carcinogenic risk, especially for children and the young age group. Toxic PAHs belong to Heavy Molecular Weight (HMW) PAHs, especially Benzo[a]pyrene (BaP). Compared with PM1.1–2.0, the Combustion-Derived PAHs group (COMPAHs) and Carcinogenic PAHs (CANPAHs) were highly concentrated in PM1.1. Stationary sources, such as the developed steel industry, made a great contribution to the level of PAHs, especially in late summer.

Funder

Scientific Research of Japanese Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3