Abstract
Cloud classification is a great challenge in meteorological research. The different types of clouds, currently known and present in our skies, can produce radioactive effects that impact the variation of atmospheric conditions, with consequent strong dominance over the earth’s climate and weather. Therefore, identifying their main visual features becomes a crucial aspect. In this paper, the goal is to adopt pretrained deep neural networks-based architecture for clouds image description, and subsequently, classification. The approach is pyramidal. Proceeding from the bottom up, it partially extracts previous knowledge of deep neural networks related to original task and transfers it to the new task. The updated knowledge is integrated in a voting context to provide a classification prediction. The framework trains the neural models on unbalanced sets, a condition that makes the task even more complex, and combines the provided predictions through statistical measures. An experimental phase on different cloud image datasets is performed, and the results achieved show the effectiveness of the proposed approach with respect to state-of-the-art competitors.
Subject
General Economics, Econometrics and Finance
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献