Voting in Transfer Learning System for Ground-Based Cloud Classification

Author:

Manzo MarioORCID,Pellino Simone

Abstract

Cloud classification is a great challenge in meteorological research. The different types of clouds, currently known and present in our skies, can produce radioactive effects that impact the variation of atmospheric conditions, with consequent strong dominance over the earth’s climate and weather. Therefore, identifying their main visual features becomes a crucial aspect. In this paper, the goal is to adopt pretrained deep neural networks-based architecture for clouds image description, and subsequently, classification. The approach is pyramidal. Proceeding from the bottom up, it partially extracts previous knowledge of deep neural networks related to original task and transfers it to the new task. The updated knowledge is integrated in a voting context to provide a classification prediction. The framework trains the neural models on unbalanced sets, a condition that makes the task even more complex, and combines the provided predictions through statistical measures. An experimental phase on different cloud image datasets is performed, and the results achieved show the effectiveness of the proposed approach with respect to state-of-the-art competitors.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on ground-based cloud image classification combining local and global features;Journal of Electronic Imaging;2024-07-27

2. Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey;Renewable and Sustainable Energy Reviews;2024-01

3. Multilayer Gaussian Feature Extraction Algorithm for Sky Image Classification;Lecture Notes in Electrical Engineering;2024

4. Cloud Classification via Satellite Images using Residual Network;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

5. YoDenBi-NET: YOLO + DenseNet + Bi-LSTM-based hybrid deep learning model for brain tumor classification;Neural Computing and Applications;2023-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3