F2F-NN: A Field-to-Field Wind Speed Retrieval Method of Microwave Radiometer Data Based on Deep Learning

Author:

Shi Xinjie,Duan Boheng,Ren Kaijun

Abstract

In this paper, we present a method for retrieving sea surface wind speed (SSWS) from Fengyun-3D (FY-3D) microwave radiation imager (MWRI) data. In contrast to the conventional point-to-point (P2P) retrieval methods, we propose a field-to-field (F2F) SSWS retrieval method based on the basic framework of a Convolutional Neural Network (CNN). Considering the spatial continuity and consistency characteristics of wind fields within a certain range, we construct the model based on the basic framework of CNN, which is suitable for retrieving various wind speed intervals, and then synchronously obtaining the smooth and continuous wind field. The retrieval results show that: (1) Comparing the retrieval results with the label data, the root-mean-square error (RMSE) of wind speed is about 0.26 m/s, the F2F-NN model is highly efficient in training and has a strong fitting ability to label data. Comparing the retrieval results with the buoys (NDBC and TAO) data, the RMSE of F2F-NN wind speed is less than 0.91 m/s, the retrieval accuracy is better than the wind field products involved in the comparison. (2) In the hurricane (Sam) area, the F2F-NN model greatly improves the accuracy of wind speed in the FY-3D wind field. Comparing five wind field products with the Stepped-Frequency Microwave Radiometer (SFMR) data, the overall accuracy of the F2F-NN wind data is the highest. Comparing the five wind field products with the International Best Track Archive for Climate Stewardship (IBTrACS) data, the F2F-NN wind field is superior to the other products in terms of maximum wind speed and maximum wind speed radius. The structure of the wind field retrieved by F2F-NN is complete and accurate, and the wind speed changes smoothly and continuously.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Sea Surface Wind Speed Retrieval based on FY-3B Microwave Imager;Dou;Remote Sens. Technol. Appl.,2015

2. A More Accurate Field-to-Field Method towards the Wind Retrieval of HY-2B Scatterometer

3. Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer

4. HY-2A microwave scatterometer wind retrieval algorithm;Lin;Eng. Sci.,2013

5. Multi-frequency Dual-polarization Spaceborne Microwave Radiometer Antennas;Wang;Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP),2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3