Target Detection Method of UAV Aerial Imagery Based on Improved YOLOv5

Author:

Luo Xudong,Wu Yiquan,Wang Feiyue

Abstract

Due to the advantages of small size, lightweight, and simple operation, the unmanned aerial vehicle (UAV) has been widely used, and it is also becoming increasingly convenient to capture high-resolution aerial images in a variety of environments. Existing target-detection methods for UAV aerial images lack outstanding performance in the face of challenges such as small targets, dense arrangement, sparse distribution, and a complex background. In response to the above problems, some improvements on the basis of YOLOv5l have been made by us. Specifically, three feature-extraction modules are proposed, using asymmetric convolutions. They are named the Asymmetric ResNet (ASResNet) module, Asymmetric Enhanced Feature Extraction (AEFE) module, and Asymmetric Res2Net (ASRes2Net) module, respectively. According to the respective characteristics of the above three modules, the residual blocks in different positions in the backbone of YOLOv5 were replaced accordingly. An Improved Efficient Channel Attention (IECA) module was added after Focus, and Group Spatial Pyramid Pooling (GSPP) was used to replace the Spatial Pyramid Pooling (SPP) module. In addition, the K-Means++ algorithm was used to obtain more accurate anchor boxes, and the new EIOU-NMS method was used to improve the postprocessing ability of the model. Finally, ablation experiments, comparative experiments, and visualization of results were performed on five datasets, namely CIFAR-10, PASCAL VOC, VEDAI, VisDrone 2019, and Forklift. The effectiveness of the improved strategies and the superiority of the proposed method (YOLO-UAV) were verified. Compared with YOLOv5l, the backbone of the proposed method increased the top-one accuracy of the classification task by 7.20% on the CIFAR-10 dataset. The mean average precision (mAP) of the proposed method on the four object-detection datasets was improved by 5.39%, 5.79%, 4.46%, and 8.90%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3