Abstract
Groundwater is a major source of drinking and agricultural water supply in arid and semiarid regions. Poor groundwater quality can be a threat to human health especially when it is combined with hazardous pollutants like heavy metals. In this study, an innovative method involving entropy weighted groundwater quality index for both physicochemical and heavy metal content was used for a semiarid region. The entropy weighted index was used to assess the groundwater’s suitability for drinking and irrigation purposes. Thus, groundwater from 19 sampling sites was used for analyses of physicochemical properties (electrical conductivity—EC, pH, K+, Ca2+, Na+, SO42−, Cl−, HCO3−, TDS, NO3−, F−, biochemical oxygen demand—BOD, dissolved oxygen—DO, and chemical oxygen demand—COD) and heavy metal content (As, Ca, Sb, Se, Zn, Cu, Ba, Mn, and Cr). To evaluate the overall pollution status in the region, heavy metal indices such as the modified heavy metal pollution index (m-HPI), heavy metal evaluation index (HEI), Nemerow index (NeI), and ecological risks of heavy metals (ERI) were calculated and compared. The results showed that Cd concentration plays a significant role in negatively affecting the groundwater quality. Thus, three wells were classified as poor water quality and not acceptable for drinking water supply. The maximum concentration of heavy metals such as Cd, Se, and Sb was higher than permissible limits by the World Health Organization (WHO) standards. However, all wells except one were suitable for agricultural purposes. The advantage of the innovative entropy weighted groundwater quality index for both physicochemical and heavy metal content, is that it permits objectivity when selecting the weights and reduces the error that may be caused by subjectivity. Thus, the new index can be used by groundwater managers and policymakers to better decide the water’s suitability for consumption.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献