Enhancing Strength and Toughness of Aluminum Laminated Composites through Hybrid Reinforcement Using Dispersion Engineering

Author:

Sadeghi Behzad1ORCID,Cavaliere Pasquale1ORCID,Sadeghian Behzad2

Affiliation:

1. Department of Innovation Engineering, University of Salento, Via per Arnesano, 73100 Lecce, Italy

2. Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

In this work, we propose a hybrid approach to solve the challenge of balancing strength and ductility in aluminum (Al) matrix composites. While some elements of our approach have been used in previous studies, such as in situ synthesis and ex situ augmentation, our work is innovative as it combines these techniques with specialized equipment to achieve success. We synthesized nanoscale Al3BC particles in situ using ultra-fine particles by incorporating carbon nanotubes (CNTs) into elemental powder mixtures, followed by mechanical activation and annealing, to obtain granular (UFG) Al. The resulting in situ nanoscale Al3BC particles are uniformly dispersed within the UFG Al particles, resulting in improved strength and strain hardening. By innovating the unique combination of nanoscale Al3BC particles synthesized in situ in UFG Al, we enabled better integration with the matrix and a strong interface. This combination provides a balance of strength and flexibility, which represents a major breakthrough in the study of composites. (Al3BC, CNT)/UFG Al composites exhibit simultaneous increases in strength (394 MPa) and total elongation (19.7%), indicating increased strength and suggesting that there are promising strengthening effects of in situ/ex situ reinforcement that benefit from the uniform dispersion and the strong interface with the matrix. Potential applications include lightweight and high-strength components for use in aerospace and automotive industries, as well as structural materials for use in advanced mechanical systems that require both high strength and toughness.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3