Two-Dimensional Surface Topological Nanolayers and Dirac Fermions in Single Crystals of the Diluted Magnetic Semiconductor (Cd1−x−yZnxMny)3As2 (x + y = 0.3)

Author:

Zakhvalinskii VasiliiORCID,Nikulicheva Tatyana,Pilyuk Evgeny,Ivanov Oleg,Kochura Aleksey,Kuzmenko Alexander,Lähderanta ErkkiORCID,Morocho Alexander

Abstract

Features in the transverse magnetoresistance of single-crystalline diluted magnetic semiconductors of a (Cd1−x−yZnxMny)3As2 system with x + y = 0.3 have been found and analyzed in detail. Two groups of samples have been examined. The samples of the first group were thermally annealed for a long time, whereas the samples of the second group were not thermally annealed. The Shubnikov–de Haas (SdH) oscillations were observed for both groups of the samples within a 4.2 ÷ 30 K temperature range and under transverse magnetic field sweeping from 0 up to 11 T. The value of a phase shift, according to the SdH oscillations, was found to be a characteristic of the Berry phase existing in all the samples, except the unannealed sample with y = 0.08. Thickness of 2D surface topological nanolayers for all the samples was estimated. The thickness substantially depended on Mn concentration. The experimental dependence of reduced cyclotron mass on the Fermi wave vector, extracted from the SdH oscillations for the samples with different doping levels, is in satisfactory agreement with the predicted theoretical linear dependence. The existence of the Dirac fermions in all the samples studied (except the unannealed sample with y = 0.08) can be concluded from this result.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3