Research on NaCl-KCl High-Temperature Thermal Storage Composite Phase Change Material Based on Modified Blast Furnace Slag

Author:

Zhang Gai12,Cui Hui1,Hu Xuecheng1,Qu Anchao1,Peng Hao13,Peng Xiaotian1ORCID

Affiliation:

1. School of Mechanical and Power Engineering, Nanjing Tech University, No. 30 Pu Zhu South Road, Nanjing 211816, China

2. China MCC22 Group Corporation Ltd., No. 16, Xingfu Road, Tangshan 063000, China

3. Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, No. 30 Pu Zhu South Road, Nanjing 211816, China

Abstract

The high-temperature composite phase change materials (HCPCMs) were prepared from solid waste blast furnace slag (BFS) and NaCl-KCl binary eutectic salt to achieve efficient and cost-effective utilization. To ensure good chemical compatibility with chlorine salt, modifier fly ash (FA) was incorporated and subjected to high-temperature treatment for the processing of industrial solid waste BFS, which possesses a complex chemical composition. The HCPCMs were synthesized through a three-step process involving static melting, solid waste modification, and mixing–cold pressing–sintering. Then, the influence of the modification method and the amount of SiC thermal conductivity reinforced material on chemical compatibility and thermodynamic performance was explored. The results demonstrate that the predominant phase of the modified solid waste is Ca2Al2SiO7, which exhibits excellent chemical compatibility with chlorine salt. HCPCMs containing less than 50 wt.% chloride content exhibit good morphological stability without any cracks, with a melting temperature of 661.76 °C and an enthalpy value of 108.73 J/g. Even after undergoing 60 thermal cycles, they maintain good chemical compatibility, with leakage rates for melting and solidification enthalpies being only 6.3% and 0.23%, respectively. The equilibrium was achieved when 40 wt.% of chloride salt was encapsulated upon the addition of 10% of SiC, and the incorporation of SiC resulted in an enhancement of thermal conductivity for HCPCMs to 2.959 W/(m·K) at room temperature and 2.400 W/(m·K) at 200 °C, with an average increase of about 2 times. The cost of the prepared HCPCMs experienced a significant reduction of 81.3%, demonstrating favorable economic performance and promising prospects for application. The research findings presented in this article can offer significant insights into the efficient utilization of solid waste.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Jiangsu Funding Program for Excellent Postdoctoral Talent

Aeronautical Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3