Atomistic Details of Methyl Linoleate Pyrolysis: Direct Molecular Dynamics Simulation of Converting Biodiesel to Petroleum Products

Author:

Bakker Michael J.1,Siebert Matthew R.1ORCID

Affiliation:

1. Department of Chemistry & Biochemistry, Missouri State University, Springfield, MO 65897, USA

Abstract

Dependence on petroleum and petrochemical products is unsustainable; it is both a finite resource and an environmental hazard. Biodiesel has many attractive qualities, including a sustainable feedstock; however, it has its complications. The pyrolysis (a process already in common use in the petroleum industry) of biodiesel has demonstrated the formation of smaller hydrocarbons comprising many petrochemical products but experiments suffer from difficulty quantifying the myriad reaction pathways followed and products formed. A computational simulation of pyrolysis using “ab initio molecular dynamics” offers atomic-level detail of the reaction pathways and products formed. Herein, the most prevalent fatty-acid ester (methyl linoleate) from the most prevalent feedstock for biodiesel in the United States (soybean oil) is studied. Temperature acceleration within the atom-centered density matrix propagation formalism (Car–Parrinello) utilizing the D3-M06-2X/6-31+G(d,p) model chemistry is used to compose an ensemble of trajectories. The results are grounded in comparison to experimental studies through agreement in the following: (1) the extent of reactivity (40% in the experimental and 36.1% in this work), (2) the homology of hydrocarbon products formed (wt % of C6–C10 products), and (3) the CO/CO2 product ratio. Deoxygenation pathways are critically analyzed (as the presence of oxygen in biodiesel represents a disadvantage in its current use). Within this ensemble, deoxygenation was found to proceed through two subclasses: (1) spontaneous deoxygenation, following one of four possible pathways; or (2) induced deoxygenation, following one of three possible pathways.

Funder

Missouri Soybean Merchandising Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3