Affiliation:
1. ENVEO IT GmbH, Fürstenweg 176, 6020 Innsbruck, Austria
Abstract
Snow can cover over 50% of the landmass in the Northern Hemisphere and has been labelled as an Essential Climate Variable by the World Meteorological Organisation. Currently, continental and global snow cover extent is primarily monitored by optical satellite sensors. There are, however, no large-scale demonstrations for methods that (1) use all the spectral information that is measured by the satellite sensor, (2) estimate fractional snow and (3) provide a pixel-wise quantitative uncertainty estimate. This paper proposes a locally adaptive method for estimating the snow-covered fraction (SCF) per pixel from all the spectral reflective bands available at spaceborne sensors. In addition, a comprehensive procedure for root-mean-square error (RMSE) estimation through error propagation is given. The method adapts the SCF estimates for shaded areas from variable solar illumination conditions and accounts for different snow-free and snow-covered surfaces. To test and evaluate the algorithm, SCF maps were generated from Sentinel-2 MSI and Landsat 8 OLI data covering various mountain regions around the world. Subsequently, the SCF maps were validated with coincidentally acquired very-high-resolution satellite data from WorldView-2/3. This validation revealed a bias of 0.2% and an RMSE of 14.3%. The proposed method was additionally tested with Sentinel-3 SLSTR/OLCI, Suomi NPP VIIRS and Terra MODIS data. The SCF estimations from these satellite data are consistent (bias less than 2.2% SCF) despite their different spatial resolutions.
Funder
ESA Snow CCI
ESA EXPRO+ AlpSnow - Alps Regional Initiative project
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献