A Random Forest-Based Multi-Index Classification (RaFMIC) Approach to Mapping Three-Decadal Inundation Dynamics in Dryland Wetlands Using Google Earth Engine

Author:

Senanayake Indishe P.1ORCID,Yeo In-Young1ORCID,Kuczera George A.1

Affiliation:

1. School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia

Abstract

Australian inland riparian wetlands located east of the Great Dividing Range exhibit unique, hydroecological characteristics. These flood-dependent aquatic systems located in water-limited regions are declining rapidly due to the competitive demand for water for human activities, as well as climate change and variability. However, there exist very few reliable data to characterize inundation change conditions and quantify the impacts of the loss and deterioration of wetlands. A long-term time record of wetland inundation maps can provide a crucial baseline to monitor, assess, and assist the management and conservation of wetland ecosystems. This study presents a random forest-based multi-index classification algorithm (RaFMIC) on the Google Earth Engine (GEE) platform to efficiently construct a temporally dense, three-decadal time record of inundation maps of the southeast Australian riparian inland wetlands. The method was tested over the Macquarie Marshes located in the semiarid region of NSW, Australia. The results showed a good accuracy when compared against high-spatial resolution imagery. The total inundated area was consistent with precipitation and streamflow patterns, and the temporal dynamics of vegetation showed good agreement with the inundation maps. The inundation time record was analysed to generate inundation probability maps, which were in a good agreement with frequently flooded areas simulated by a hydrodynamic model and the distribution of flood-dependent vegetation species. The long-term, time-dense inundation maps derived from the RaFMIC method can provide key information to assess the condition and health of wetland ecosystems and have the potential to improve wetland inventory with spatially explicit water regime information. RaFMIC can be adapted over other dryland wetlands, as an effective semiautomated method of mapping long-term inundation dynamics.

Funder

Australian Research Council (ARC), Discovery Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference95 articles.

1. Gardner, R.C., and Davidson, N.C. (2011). Wetlands, Springer.

2. Matthews, G.V.T. (1993). The Ramsar Convention on Wetlands: its History and Development, Ramsar Convention Bureau.

3. Department of Agriculture Water and Environment, Australia (2020, September 29). Water Policy and Resources, Available online: https://www.environment.gov.au/wetlands.

4. Importance of small wetlands for the persistence of local populations of wetland-associated animals;Gibbs;Wetlands,1993

5. Wetlands: lifeline for people at the edge;Silvius;Phys. Chem. Earth Part B Hydrol. Ocean. Atmos.,2000

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3